Brief information about the project

Name of the project	AR14872061 "Classification of types of modulation of a noise mixture of MIMO signals"
Relevance	MIMO antenna technologies are often used in wireless radio communications, as this system can increase the throughput of the wireless channel and improve the quality of communication. The main method of increasing throughput in MIMO systems is multiplexing, that is, the parallel transmission of several streams of information from different antennas. Previous modulation classification (CM) algorithms were designed for SISO (Single-Input Single-Output, SISO) technologies and cannot provide efficient operation in transmitting data over multiple antennas. So far, many methods have been considered to solve the problem of signal identification for MIMO systems. It was revealed that due to the multiple number of antennas, crosstalk and noise arise, and the search for a new algorithm solves the problems associated with mutual interference in MIMO channels. The proposed detection system based on information-entropy method can effectively improve the reliability of MIMO systems in practical scenarios considering noise without any initial parameters by using conditional information from the same signal. In work related to classification based on one-dimensional information entropy, 9 types of modulated signals were studied and it was found that with different SNR (signal- to-noise ratio) it is difficult to identify BPSK (Binary phase-shift keying), QPSK (Quadrature Phase Shift Keying), and also QAM (Quadrature Amplitude Modulation) signals. The idea of the program is to develop and create effective digital information-entropy methods for determining the types of modulations of MIMO systems signals.
Purpose	The goal of this project is to develop and create, based on our own scientific results, algorithms for determining the types of modulation of noise signals in MIMO systems (with many inputs and outputs). Comparison of the results of the theory with known and own experimental facts.
Objectives	 Theoretical and numerical modeling of modulation types (amplitude, frequency, phase, pulse) of MIMO systems signals with different noise levels. Development of an algorithm for recognition (detection) of modulated signals using a new criterion - the difference in conditional information. Creation of a transceiver module with control and measuring instruments for generating and receiving radio signals with various types of modulation in different frequency ranges. Development of an algorithm for extracting detected modulated signals from a noise mixture by filtering using conditional information. Creation of a system of MIMO antennas with emitting and receiving elements of an anisotropic - fractal shape. Physical experiment on the transmission and reception of modulated signals of a MIMO system, modulated in amplitude, frequency, pulse. Development of an algorithm for classifying types of phase modulation of a noise mixture by the difference in conditional

	information using characteristic phase functions determined from the
	received signal as a condition.
	8. Experiment with MIMO signals with phase modulations at different
	polarizations and frequencies.
	9. Determination of correlation, spectral, fractal, chaotic, statistical
	characteristics of established types of modulated signals for the purpose
	of their identification.
	10. Comparison of theories with experiments, analysis and conclusions
	on all characteristics of MIMO signals.
Expected and	Expected results:
achieved results	1. Receiving model signals: MPSK (Multiple Phase Shift Keying),
	QAM (Quadrature amplitude modulation), MFSK (Multiple frequency-
	shift keying) for MIMO systems.
	2. Conclusion about the presence of various modulations in the noise
	mixture of signals.
	3. Transmitting and receiving blocks will be created: generator, fractal
	antennas, modulators.
	4. The modulation time series from the noise telecommunication signal
	will be obtained.
	5. A MIMO antenna will be developed based on emitters with an
	anisotropic fractal shape.
	6. Using MIMO antennas, the technology of adaptive shaping of
	characteristics will be implemented: radiation pattern, signal
	polarization.
	7. Algorithms for identifying phase modulation, which is the most
	unstable to noise.
	8. MIMO signal parameters defining the detected signals will be
	obtained. The data will be recorded in a format suitable for further
	analysis and processing.
	9. Characteristics (spectrum, fractal dimensions, correlations,
	information entropy) of the reconstructed signals.
	Results achieved:
	The new entropy-conditional information algorithms we have
	developed can have effective applications in the creation of MIMO
	communication systems. An important task in this direction -
	knowledge of the information connection of signals at different
	frequencies and polarization of the fluctuation signal between two users
	requires the use of conditional information which is non-zero even in
	the absence of signal correlations according to known methods
Research team	1 Жанабаев Зейнулла Жанабаевич ORCID https://orcid.org/0000-
members with their	0001-5959-2707 Scopus Author ID: 15840905700
identifiers (Sconus	https://www.scopus.com/authid/detail.uri?authorId=15840905700
Author ID	2 Ахтанов Саят Нусипбекович ORCID https://orcid.org/0000-
Researcher ID	0002-9705-8000 ResearcherID: P-8604-2014 Scopus Author
ORCID if available)	ID: 55672124000
and links to relevant	https://www.scopus.com/authid/detail.uri?authorId=55672124000
profiles	3 Xauuep Fakut Afaepuu ORCID https://orcid.org/0000-0002-
Promos	0103-9201 Scopus Author ID: 57218681308
	https://www.scopus.com/authid/detail.uri?authorId=57218681208
	A Ukramona Cantanat Faw invance on Scones Author ID:
	ч. <u>икратова Салтанат Бауыржанқызы</u> эсория Аншог ID. 57205162005
	57205102775 https://www.scopus.com/outbid/datail.um?outborId=57205162005
	1000000000000000000000000000000000000

	5. Yciпов Нұржан Мұсайыпұлы ORCID <u>https://orcid.org/0000-</u>
	0002-2512-3280
	https://www.scopus.com/authid/detail.uri?authorId=57226319348
	6. Намазбаев Тимур Адильканович ORCID <u>http://orcid.org/0000-</u>
	<u>0002-2389-2262</u> , Researcher ID: T-1905-2017
	https://www.scopus.com/authid/detail.uri?authorId=57199834076
	7. Турлыкожаева Дана Абдикумаровна ORCID
	https://orcid.org/0000-0002-7326-9196 Scopus Author ID:
	57413376300,
	https://www.scopus.com/authid/detail.uri?authorId=57199834076
	8. <u>Тілеу Аян Оразбайұлы ORCID https://orcid.org/0000-0001-</u>
	<u>9965-6728,</u> Scopus Author ID: 57218680509
	https://www.scopus.com/authid/detail.uri?authorId=57218680509
	9. Акниязова Айгерим Жанатовна ORCID <u>https://orcid.org/0000-</u>
	0002-9185-3185
	10. Дуйсебаев Толағай Сабыржанұлы ORCID
	https://orcid.org/0000-0002-4992-0495
	11. Ахметәлі Алмат Берікбайұлы ORCID <u>https://orcid.org/0009-</u>
	<u>0005-7254-524X</u> Scopus Author ID: 58759186800,
	https://www.scopus.com/authid/detail.uri?authorId=58759186800
	12. Сақан Ақнұр Берікжанқызы ORCID https://orcid.org/0009-
	0001-8784-4470
List of publications	1. Жанабаев З. Ж., Усипов Н. М. INFORMATION-ENTROPY
with links to them	METHOD FOR DETECTING GRAVITATIONAL WAVE
	SIGNALS //Eurasian Physical Technical Journal. – 2023. – T. 20. –
	№. 2 (44). – C. 79-86.
	2. Турлыкожаева Д. А. Усипов Н. М. Ахтанов С. Н. и др.
	ROUTING METRIC AND PROTOCOL FOR WIRELESS MESH
	NETWORK BASED ON INFORMATION ENTROPY THEORY
	//Eurasian Physical Technical Journal. – 2023. – T. 20. – №. 4 (46).
	- C. 90-98.
Patents	-